Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NeuroImmune Pharm Ther ; 3(1): 33-46, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38532786

RESUMEN

Objectives: Approximately 75 % of marketed drugs have the physicochemical property of being weak bases. Weak-base drugs with relatively high pKa values enter acidic organelles including endosomes and lysosomes (endolysosomes), reside in and de-acidify endolysosomes, and induce cytotoxicity. Divalent cations within endolysosomes, including iron, are released upon endolysosome de-acidification. Endolysosomes are "master regulators of iron homeostasis", and neurodegeneration is linked to ferrous iron (Fe2+)-induced reactive oxygen species (ROS) generation via Fenton chemistry. Because endolysosome de-acidification-induced lysosome-stress responses release endolysosome Fe2+, it was crucial to determine the mechanisms by which a functionally and structurally diverse group of weak base drugs including atropine, azithromycin, fluoxetine, metoprolol, and tamoxifen influence endolysosomes and cause cell death. Methods: Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we conducted concentration-response relationships for 5 weak-base drugs to determine EC50 values. From these curves, we chose pharmacologically and therapeutically relevant concentrations to determine if weak-base drugs induced lysosome-stress responses by de-acidifying endolysosomes, releasing endolysosome Fe2+ in sufficient levels to increase cytosolic and mitochondria Fe2+ and ROS levels and cell death. Results: Atropine (anticholinergic), azithromycin (antibiotic), fluoxetine (antidepressant), metoprolol (beta-adrenergic), and tamoxifen (anti-estrogen) at pharmacologically and therapeutically relevant concentrations (1) de-acidified endolysosomes, (2) decreased Fe2+ levels in endolysosomes, (3) increased Fe2+ and ROS levels in cytosol and mitochondria, (4) induced mitochondrial membrane potential depolarization, and (5) increased cell death; effects prevented by the endocytosed iron-chelator deferoxamine. Conclusions: Weak-base pharmaceuticals induce lysosome-stress responses that may affect their safety profiles; a better understanding of weak-base drugs on Fe2+ interorganellar signaling may improve pharmacotherapeutics.

2.
J Neurosci ; 44(14)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38383499

RESUMEN

Human endogenous retroviruses (HERVs) are associated with the pathogenesis of amyotrophic lateral sclerosis (ALS); a disease characterized by motor neuron degeneration and cell death. The HERV-K subtype HML-2 envelope protein (HERV-K Env) is expressed in the brain, spinal cord, and cerebrospinal fluid of people living with ALS and through CD98 receptor-linked interactions causes neurodegeneration. HERV-K Env-induced increases in oxidative stress are implicated in the pathogenesis of ALS, and ferrous iron (Fe2+) generates reactive oxygen species (ROS). Endolysosome stores of Fe2+ are central to iron trafficking and endolysosome deacidification releases Fe2+ into the cytoplasm. Because HERV-K Env is an arginine-rich protein that is likely endocytosed and arginine is a pH-elevating amino acid, it is important to determine HERV-K Env effects on endolysosome pH and whether HERV-K Env-induced neurotoxicity is downstream of Fe2+ released from endolysosomes. Here, we showed using SH-SY5Y human neuroblastoma cells and primary cultures of human cortical neurons (HCNs, information on age and sex was not available) that HERV-K Env (1) is endocytosed via CD98 receptors, (2) concentration dependently deacidified endolysosomes, (3) decreased endolysosome Fe2+ concentrations, (4) increased cytosolic and mitochondrial Fe2+ and ROS levels, (5) depolarized mitochondrial membrane potential, and (6) induced cell death, effects blocked by an antibody against the CD98 receptor and by the endolysosome iron chelator deferoxamine. Thus, HERV-K Env-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear to be mechanistically caused by HERV-K Env endocytosis, endolysosome deacidification, and endolysosome Fe2+ efflux into the cytoplasm.


Asunto(s)
Esclerosis Amiotrófica Lateral , Retrovirus Endógenos , Neuroblastoma , Síndromes de Neurotoxicidad , Humanos , Esclerosis Amiotrófica Lateral/patología , Hierro , Especies Reactivas de Oxígeno , Arginina
3.
NeuroImmune Pharm Ther ; 2(1): 19-35, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37027339

RESUMEN

Objectives: Opioids including morphine and DAMGO activate mu-opioid receptors (MOR), increase intracellular reactive oxygen species (ROS) levels, and induce cell death. Ferrous iron (Fe2+) through Fenton-like chemistry increases ROS levels and endolysosomes are "master regulators of iron metabolism" and contain readily-releasable Fe2+ stores. However, mechanisms underlying opioid-induced changes in endolysosome iron homeostasis and downstream-signaling events remain unclear. Methods: We used SH-SY5Y neuroblastoma cells, flow cytometry, and confocal microscopy to measure Fe2+ and ROS levels and cell death. Results: Morphine and DAMGO de-acidified endolysosomes, decreased endolysosome Fe2+ levels, increased cytosol and mitochondria Fe2+ and ROS levels, depolarized mitochondrial membrane potential, and induced cell death; effects blocked by the nonselective MOR antagonist naloxone and the selective MOR antagonist ß-funaltrexamine (ß-FNA). Deferoxamine, an endolysosome-iron chelator, inhibited opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS. Opioid-induced efflux of endolysosome Fe2+ and subsequent Fe2+ accumulation in mitochondria were blocked by the endolysosome-resident two-pore channel inhibitor NED-19 and the mitochondrial permeability transition pore inhibitor TRO. Conclusions: Opioid agonist-induced increases in cytosolic and mitochondrial Fe2+ and ROS as well as cell death appear downstream of endolysosome de-acidification and Fe2+ efflux from the endolysosome iron pool that is sufficient to affect other organelles.

5.
Cells ; 11(11)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681506

RESUMEN

People with human immunodeficiency virus-1 (PLWH) experience high rates of HIV-1-associated neurocognitive disorders (HANDs); clinical symptoms range from being asymptomatic to experiencing HIV-associated dementia. Antiretroviral therapies have effectively prolonged the life expectancy related to PLWH; however, the prevalence of HANDs has increased. Implicated in the pathogenesis of HANDs are two HIV-1 proteins, transactivator of transcription (Tat) and gp120; both are neurotoxic and damage mitochondria. The thread-like morphological features of functional mitochondria become fragmented when levels of reactive oxygen species (ROS) increase, and ROS can be generated via Fenton-like chemistry in the presence of ferrous iron (Fe2+). Endolysosomes are central to iron trafficking in cells and contain readily releasable Fe2+ stores. However, it is unclear whether the endolysosome store is sufficient to account for insult-induced increases in levels of ROS, mitochondrial fragmentation, autophagy, and cell death. Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we determined that chloroquine (CQ), Tat, and gp120 all (1) de-acidified endolysosomes, (2) decreased endolysosome numbers and increased endolysosome sizes, (3) increased mitochondrial numbers (fragmentation), (4) increased autophagosome numbers, (5) increased autolysosome numbers, (6) increased mitochondrial fragments within endolysosomes, and (7) increased cell death. These effects were all blocked by the endolysosome-specific iron chelator deferoxamine (DFO). Thus, the endolysosome de-acidification-induced release of endolysosome Fe2+ is sufficient to account for inter-organellar signaling events and cell biology consequences of HIV-1 proteins, including mitochondrial fragmentation, autophagy, and cell death.


Asunto(s)
Seropositividad para VIH , VIH-1 , Neuroblastoma , Muerte Celular , Seropositividad para VIH/metabolismo , VIH-1/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Quelantes del Hierro/farmacología , Lisosomas/metabolismo , Mitofagia , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
J Neurochem ; 161(1): 69-83, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35124818

RESUMEN

Endolysosomes are key regulators of iron metabolism and are central to iron trafficking and redox signaling. Iron homeostasis is linked to endolysosome acidity and inhibition of endolysosome acidity triggers iron dysregulation. Because of the physiological importance and pathological relevance of ferrous iron (Fe2+ ), we determined levels of Fe2+ specifically and quantitatively in endolysosomes as well as the effects of Fe2+ on endolysosome morphology, distribution patterns, and function. The fluorescence dye FeRhoNox-1 was specific for Fe2+ and localized to endolysosomes in U87MG astrocytoma cells and primary rat cortical neurons; in U87MG cells the endolysosome concentration of Fe2+ ([Fe2+ ]el ) was 50.4 µM in control cells, 73.6 µM in ferric ammonium citrate (FAC) treated cells, and 12.4 µM in cells treated with the iron chelator deferoxamine (DFO). Under control conditions, in primary rat cortical neurons, [Fe2+ ]el was 32.7 µM. Endolysosomes containing the highest levels of Fe2+ were located perinuclearly. Treatment of cells with FAC resulted in endolysosomes that were less acidic, increased in numbers and sizes, and located further from the nucleus; opposite effects were observed for treatments with DFO. Thus, FeRhoNox-1 is a useful probe for the study of endolysosome Fe2+ , and much more work is needed to understand better the physiological significance and pathological relevance of endolysosomes classified according to their heterogeneous iron content Cover Image for this issue: https://doi.org/10.1111/jnc.15396.


Asunto(s)
Hierro , Lisosomas , Animales , Endosomas/metabolismo , Compuestos Férricos/metabolismo , Compuestos Férricos/farmacología , Hierro/metabolismo , Lisosomas/metabolismo , Neuronas/metabolismo , Ratas
7.
FASEB J ; 36(3): e22184, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35113458

RESUMEN

The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.


Asunto(s)
Astrocitos/virología , Endocitosis/genética , Endosomas/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , Lisosomas/genética , Activación Transcripcional/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Línea Celular Tumoral , Regulación Viral de la Expresión Génica/genética , Infecciones por VIH/genética , Infecciones por VIH/virología , Humanos , Regiones Promotoras Genéticas/genética , Latencia del Virus/genética , Replicación Viral/genética
8.
Sci Rep ; 12(1): 380, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013473

RESUMEN

Epigenetic modifications are crucial for normal development and implicated in disease pathogenesis. While epigenetics continues to be a burgeoning research area in neuroscience, unaddressed issues related to data reproducibility across laboratories remain. Separating meaningful experimental changes from background variability is a challenge in epigenomic studies. Here we show that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. We examined genome-wide DNA methylation and gene expression profiles of hippocampal tissues from wild-type rats housed in three independent laboratories using nearly identical conditions. Reduced-representation bisulfite sequencing and RNA-seq respectively identified 3852 differentially methylated and 1075 differentially expressed genes between laboratories, even in the absence of experimental intervention. Difficult-to-match factors such as animal vendors and a subset of husbandry and tissue extraction procedures produced quantifiable variations between wild-type animals across the three laboratories. Our study demonstrates that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. This is particularly meaningful for neurological studies in animal models, in which baseline parameters between experimental groups are difficult to control. To enhance scientific rigor, we conclude that strict adherence to protocols is necessary for the execution and interpretation of epigenetic studies and that protocol-sensitive epigenetic changes, amongst naive animals, may confound experimental results.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenoma , Epigenómica/normas , Hipocampo/metabolismo , Animales , Bases de Datos Genéticas , Masculino , Variaciones Dependientes del Observador , Control de Calidad , RNA-Seq/normas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
9.
J Neuroimmune Pharmacol ; 17(1-2): 181-194, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33834418

RESUMEN

The HIV-1 coat protein gp120 continues to be implicated in the pathogenesis of HIV-1 associated neurocognitive disorder (HAND); a condition known to affect ~50% of people living with HIV-1 (PLWH). Autopsy brain tissues of HAND individuals display morphological changes to mitochondria and endolysosomes, and HIV-1 gp120 causes mitochondrial dysfunction including increased levels of reactive oxygen species (ROS) and de-acidification of endolysosomes. Ferrous iron is linked directly to ROS production, ferrous iron is contained in and released from endolysosomes, and PLWH have elevated iron and ROS levels. Based on those findings, we tested the hypothesis that HIV-1 gp120-induced endolysosome de-acidification and subsequent iron efflux from endolysosomes is responsible for increased levels of ROS. In U87MG glioblastoma cells, HIV-1 gp120 de-acidified endolysosomes, reduced endolysosome iron levels, increased levels of cytosolic and mitochondrial iron, and increased levels of cytosolic and mitochondrial ROS. These effects were all attenuated significantly by the endolysosome-specific iron chelator deferoxamine, by inhibitors of endolysosome-resident two-pore channels and divalent metal transporter-1 (DMT-1), and by inhibitors of mitochondria-resident DMT-1 and mitochondrial permeability transition pores. These results suggest that oxidative stress commonly observed with HIV-1 gp120 is downstream of its ability to de-acidify endolysosomes, to increase the release of iron from endolysosomes, and to increase the uptake of iron into mitochondria. Thus, endolysosomes might represent early and upstream targets for therapeutic strategies against HAND.


Asunto(s)
VIH-1 , Hierro , Humanos , Especies Reactivas de Oxígeno , Mitocondrias
10.
J Neurosci ; 41(50): 10365-10381, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34764157

RESUMEN

Neurotoxic HIV-1 viral proteins contribute to the development of HIV-associated neurocognitive disorder (HAND), the prevalence of which remains high (30-50%) with no effective treatment available. Estrogen is a known neuroprotective agent; however, the diverse mechanisms of estrogen action on the different types of estrogen receptors is not completely understood. In this study, we determined the extent to which and mechanisms by which 17α-estradiol (17αE2), a natural less-feminizing estrogen, offers neuroprotection against HIV-1 gp120-induced neuronal injury. Endolysosomes are important for neuronal function, and endolysosomal dysfunction contributes to HAND and other neurodegenerative disorders. In hippocampal neurons, estrogen receptor α (ERα) is localized to endolysosomes and 17αE2 acidifies endolysosomes. ERα knockdown or overexpressing an ERα mutant that is deficient in endolysosome localization prevents 17αE2-induced endolysosome acidification. Furthermore, 17αE2-induced increases in dendritic spine density depend on endolysosome localization of ERα. Pretreatment with 17αE2 protected against HIV-1 gp120-induced endolysosome deacidification and reductions in dendritic spines; such protective effects depended on endolysosome localization of ERα. In male HIV-1 transgenic rats, we show that 17αE2 treatment prevents the development of enlarged endolysosomes and reduction in dendritic spines. Our findings demonstrate a novel endolysosome-dependent pathway that governs the ERα-mediated neuroprotective actions of 17αE2, findings that might lead to the development of novel therapeutic strategies against HAND.SIGNIFICANCE STATEMENT Extranuclear presence of membrane-bound estrogen receptors (ERs) underlie the enhancing effect of estrogen on cognition and synaptic function. The estrogen receptor subtype ERα is present on endolysosomes and plays a critical role in the enhancing effects of 17αE2 on endolysosomes and dendritic spines. These findings provide novel insight into the neuroprotective actions of estrogen. Furthermore, 17αE2 protected against HIV-1 gp120-induced endolysosome dysfunction and reductions in dendritic spines, and these protective effects of 17αE2 were mediated via endolysosome localization of ERα. Such findings provide a rationale for developing 17αE2 as a therapeutic strategy against HIV-associated neurocognitive disorders.


Asunto(s)
Complejo SIDA Demencia , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Proteína gp120 de Envoltorio del VIH/toxicidad , Lisosomas/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas
11.
Front Cell Neurosci ; 15: 777738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776872

RESUMEN

SARS-CoV-2 is the viral cause of the COVID-19 pandemic. Increasingly, significant neurological disorders have been associated with COVID-19. However, the pathogenesis of these neurological disorders remains unclear especially because only low or undetectable levels of SARS-CoV-2 have been reported in human brain specimens. Because SARS-CoV-2 S1 protein can be released from viral membranes, can cross the blood-brain barrier, and is present in brain cells including neurons, we tested the hypothesis that SARS-CoV-2 S1 protein can directly induce neuronal injury. Incubation of primary human cortical neurons with SARS-CoV-2 S1 protein resulted in accumulation of the S1 protein in endolysosomes as well as endolysosome de-acidification. Further, SARS-CoV-2 S1 protein induced aberrant endolysosome morphology and neuritic varicosities. Our findings suggest that SARS-CoV-2 S1 protein directly induces neuritic dystrophy, which could contribute to the high incidence of neurological disorders associated with COVID-19.

12.
Immunotherapy ; 13(18): 1555-1563, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34743608

RESUMEN

Leprosy and tuberculosis are infectious diseases that are caused by bacteria, and both share primary risk factors. Mediators of these diseases are regulated by a heterogeneous immature population of myeloid cells called myeloid-derived suppressor cells (MDSCs) that exhibit immunosuppressive activity against innate and adaptive immunity. During pathological conditions, endoplasmic reticulum (ER) stress occurs in MDSCs, and high levels of ER stress affect MDSC-linked immunosuppressive activity. Investigating the role of ER stress in regulating immunosuppressive functions of MDSCs in leprosy and tuberculosis may lead to new approaches to treating these diseases. Here the authors discuss the immunoregulatory effects of ER stress in MDSCs as well as the possibility of targeting unfolded protein response elements of ER stress to diminish the immunosuppressive activity of MDSCs and reinvigorate diminished adaptive immune system responses that occur in leprosy and tuberculosis.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Lepra , Células Supresoras de Origen Mieloide/inmunología , Tuberculosis , Respuesta de Proteína Desplegada/inmunología , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Lepra/inmunología , Lepra/terapia , Tuberculosis/inmunología , Tuberculosis/terapia
13.
J Neurovirol ; 27(5): 755-773, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34550543

RESUMEN

HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.


Asunto(s)
VIH-1 , beta Catenina , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/virología , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Duplicado del Terminal Largo de VIH , VIH-1/genética , VIH-1/metabolismo , Humanos , Hierro/metabolismo , Activación Transcripcional , beta Catenina/genética , beta Catenina/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
14.
Viruses ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452331

RESUMEN

Human immunodeficiency virus (HIV)-1 and HIV-2 originated from cross-species transmission of simian immunodeficiency viruses (SIVs). Most of these transfers resulted in limited spread of these viruses to humans. However, one transmission event involving SIVcpz from chimpanzees gave rise to group M HIV-1, with M being the principal strain of HIV-1 responsible for the AIDS pandemic. Vpu is an HIV-1 accessory protein generated from Env/Vpu encoded bicistronic mRNA and localized in cytosolic and membrane regions of cells capable of being infected by HIV-1 and that regulate HIV-1 infection and transmission by downregulating BST-2, CD4 proteins levels, and immune evasion. This review will focus of critical aspects of Vpu including its zoonosis, the adaptive hurdles to cross-species transmission, and future perspectives and broad implications of Vpu in HIV-1 infection and dissemination.


Asunto(s)
Infecciones por VIH/virología , VIH-1/metabolismo , VIH-1/patogenicidad , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Viroporinas/metabolismo , Animales , Infecciones por VIH/transmisión , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Viroporinas/genética , Virulencia
15.
Semin Cancer Biol ; 76: 74-85, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34139350

RESUMEN

Iron, the most abundant metal in human brain, is an essential microelement that regulates numerous cellular mechanisms. Some key physiological roles of iron include oxidative phosphorylation and ATP production, embryonic neuronal development, formation of iron-sulfur clusters, and the regulation of enzymes involved in DNA synthesis and repair. Because of its physiological and pathological importance, iron homeostasis must be tightly regulated by balancing its uptake, transport, and storage. Endosomes and lysosomes (endolysosomes) are acidic organelles known to contain readily releasable stores of various cations including iron and other metals. Increased levels of ferrous (Fe2+) iron can generate reactive oxygen species (ROS) via Fenton chemistry reactions and these increases can damage mitochondria and genomic DNA as well as promote carcinogenesis. Accumulation of iron in the brain has been linked with aging, diet, disease, and cerebral hemorrhage. Further, deregulation of brain iron metabolism has been implicated in carcinogenesis and may be a contributing factor to the increased incidence of brain tumors around the world. Here, we provide insight into mechanisms by which iron accumulation in endolysosomes is altered by pH and lysosome membrane permeabilization. Such events generate excess ROS resulting in mitochondrial DNA damage, fission, and dysfunction, as well as DNA oxidative damage in the nucleus; all of which promote carcinogenesis. A better understanding of the roles that endolysosome iron plays in carcinogenesis may help better inform the development of strategic therapeutic options for cancer treatment and prevention.


Asunto(s)
Neoplasias Encefálicas/patología , Carcinogénesis/patología , Endosomas/metabolismo , Hierro/metabolismo , Lisosomas/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Carcinogénesis/metabolismo , Humanos
16.
J Cell Signal ; 2(1): 63-79, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33768214

RESUMEN

The outbreak of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has led to coronavirus disease-19 (COVID-19); a pandemic disease that has resulted in devastating social, economic, morbidity and mortality burdens. SARS-CoV-2 infects cells following receptor-mediated endocytosis and priming by cellular proteases. Following uptake, SARS-CoV-2 replicates in autophagosome-like structures in the cytosol following its escape from endolysosomes. Accordingly, the greater endolysosome pathway including autophagosomes and the mTOR sensor may be targets for therapeutic interventions against SARS-CoV-2 infection and COVID-19 pathogenesis. Naturally existing compounds (phytochemicals) through their actions on endolysosomes and mTOR signaling pathways might provide therapeutic relief against COVID-19. Here, we discuss evidence that some natural compounds through actions on the greater endolysosome system can inhibit SARS-CoV-2 infectivity and thereby might be repurposed for use against COVID-19.

17.
J Neuroimmune Pharmacol ; 16(2): 219-237, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33751445

RESUMEN

Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.


Asunto(s)
Lisosomas , Estrés Fisiológico , Animales , Humanos
18.
Front Cell Dev Biol ; 9: 627639, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634129

RESUMEN

Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.

19.
J Allergy Infect Dis ; 2(3): 75-83, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37564275

RESUMEN

SARS-CoV-2 infection causes COVID-19, which has emerged as a health emergency worldwide. SARS-CoV-2 infects cells by binding to ACE2 receptors and enters into the cytoplasm following its escape from endolysosomes. Once in the cytoplasm, the virus replicates and eventually causes various pathological conditions including acute respiratory distress syndrome (ARDS) that is caused by pro-inflammatory cytokine storms. Thus, endolysosomes and cytokine storms are important therapeutic targets to suppress SARS-CoV-2 infection and COVID-19. Here, we discuss therapeutic targets of SARS-CoV-2 infection and available drugs that could be helpful in the suppression of the SARS-CoV-2 infection and pathological condition COVID-19. The urgency of the COVID-19 pandemic precludes the development of new drugs and increased focus on drug repurposing might provide the quickest way to finding effective medicines.

20.
J Neuroimmune Pharmacol ; 16(1): 169-180, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31776836

RESUMEN

Despite the introduction of antiretroviral (ARV) therapy (ART), approximately 30-50% of people living with human immunodeficiency virus-1 (HIV-1) will develop a spectrum of measurable neurocognitive dysfunction, collectively called HIV-associated neurocognitive disorder (HAND). While the clinical manifestations of HAND have changed with the advent of ART, certain pathological features have endured, including white matter alterations and dysfunction. The persistence of white matter alterations in the post-ART era suggests that ARV drugs themselves may contribute to HAND pathology. Our group has previously demonstrated that two ARV compounds from the protease inhibitor (PI) class, ritonavir and lopinavir, inhibit oligodendrocyte maturation and myelin protein production. We hypothesized that other members of the PI class, saquinavir and darunavir, could also negatively impact oligodendrocyte differentiation. Here we demonstrate that treating primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either ARV drug results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Furthermore, we show that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- and darunavir-induced inhibition of oligodendrocyte maturation. Moreover, our findings suggest, for the first time, an imperative role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against ARV-induced oligodendrocyte dysregulation. Graphical Abstract Treatment of primary rat oligodendrocyte precursor cells with therapeutically relevant concentrations of either antiretroviral compound of the protease inhibitor class, darunavir or saquinavir, results in a concentration-dependent inhibition of oligodendrocyte maturation in vitro. Additionally, in darunavir or saquinavir-treated cultures we observed a concentration-dependent decrease in the number of acidic lysosomes, via immunostaining with LysoTracker Red, compared with vehicle-treated cultures. Finally, we showed that acidifying endolysosomal pH via a mucolipin transient receptor potential channel 1 (TRPML1) agonist provides protection against saquinavir- or darunavir-induced inhibition of oligodendrocyte maturation. Our findings suggest, for the first time, a critical role of proper endolysosomal pH in regulating OL differentation, and that therapeutic targeting of endolysosomes may provide protection against antiretroviral-induced oligodendrocyte dysregulation.


Asunto(s)
Darunavir/farmacología , Endosomas/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacología , Lisosomas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Saquinavir/farmacología , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Darunavir/toxicidad , Depresión Química , Relación Dosis-Respuesta a Droga , Endosomas/química , Inhibidores de la Proteasa del VIH/toxicidad , Concentración de Iones de Hidrógeno , Lisosomas/química , Proteínas de la Mielina/biosíntesis , Estrés Oxidativo , Ftalimidas/farmacología , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Saquinavir/toxicidad , Canales de Potencial de Receptor Transitorio/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...